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This column is a place for those bits of contagious

mathematics that travel from person to person in the

community, because they are so elegant, surprising, or

appealing that one has an urge to pass them on.

Contributions are most welcome.

TT
he Baltic Centre for Contemporary Art (http://www.
balticmill.com) is an international centre for contem-
porary art located on the south bank of the river Tyne

alongside the Gateshead Millennium Bridge in Gateshead,
North East England, United Kingdom. It opened in 2002 in
a converted flour mill, and presents a constantly changing
programme of exhibitions and events.

To celebrate its tenth anniversary, theBaltic held a weekend
of events themed around the number TEN. One of us (S. H.)
was asked to present a series of maths art workshops in which
the general public was able to participate during this weekend.
Turner Prize (for contemporary art) Winner Mark Wallinger’s
work ‘‘Systemising the Randomness of Nature, a look at Super
Perfect Numbers’’, was exhibiting at the Baltic, so randomness
and hidden order were chosen as the theme for the workshop.
A game was created that families were able to play as a visual
starting point to generate discussion around the question of
what randomness is. One starts with three different randomly
placed colours on a top rowof 10. The rule for creating the next
row is simply to look at the row above:

• If two consecutive colours in the row above are the same,
thenplace the samecolour inbetween themin thenext row.

• If the twoconsecutivecolours in the rowabovearedifferent,
thenplace the third colour in between them in the next row.

In this way one generates a row of 9, then - with the same
rule - a row of 8, and this procedure continues until one
arrives at a single colour at the bottom of a triangle.

When the top rowwasplaced, the secondauthorpredicted
what the final resulting colour at the bottom of the triangle
would be.

At first it was not clear that this prediction could be made
with one-hundred percent certainty, but after performing this
workshop a number of times, it turned out that by looking at
the first and last colours in this first row one could predict the
bottom colour. One simply has to apply the above rule to the
first and last entries of the top row: This will be the bottom
colour. For example, if these entries are red and blue as in the
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picture below, one can be sure that the final entry at the bot-
tom of the triangle will be yellow.

This provokes the questions:

• Does this only work with a top row of 10?
• Is there some deep underlying order in this randomness?

With the help of a computer program, it turned out that not
only 10 but also 4 and 28 are admissible, and this gave rise to
the conjecture that the ‘‘good’’ numbers are those of the form
3s + 1.

In this article, we will investigate this problem in a more
general setting. We will consider the rule used for the

colours in the Centre as a special case of the following
situation:

There are given a finite set D with at least two elements (in
the gallery example: {red, blue, yellow}) and a map / :
D� D! D (in the gallery: /(i, i) := i, and if i = j then /
(i, j) := k where i = k = j). The map / induces maps
/n : Dn ! Dn�1 by

ða1; . . .;anÞ 7! /ða1;a2Þ;/ða2;a3Þ; . . .;/ðan�1;anÞð Þ:

The (n - 1)-fold composition Un¼ /2 � . . . �/n�1 �/n

maps Dn to D:
(Note that the /n;/n�1; . . . generate the rows of a triangle and
that Unða1; . . .;anÞ is the bottom element if the first row is
ða1; . . .;anÞ:)
In the gallery example, the surprising fact was observed
that for n = 4, 10, 28, the bottom color Unða1; . . .;anÞ
equals /(a1,an) for arbitrary ða1; . . .;anÞ 2 Dn:

Call an integer n [ 2 /-simple if Unða1; . . .;anÞ ¼
/ða1; anÞ always holds. In the sequel, we will provide
some examples and some general results concerning the
collection of such /-simple integers. It will turn out
that there are some surprising connections with finite
abelian groups and arithmetic properties of binomial
coefficients.

You, the readers of this article, are invited to transform
our results into some entertaining magical tricks, be it by
using a deck of cards or simply a sheet of paper in your
performance.
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Examples
We will consider here several classes of examples for which a
complete characterization of the /-simple n is possible.

a) Left or right dependencies: Let w : D! D be any map, we
define /w;l : D2 ! D by ði; jÞ ! wðiÞ: Then the following
facts are obvious:

• An integer n is /w;l-simple iff wn�1 coincides with w.
E.g., for constant w all n [ 2 are /w;l-simple, and it is
easy to define w such that no /w;l-simple integers exist.

• Suppose that w is bijective and let k be the smallest
integer such that wk is the identity. Then a number n is
/w;l-simple iff n lies in the set fk þ 2; 2k þ 2;
3k þ 2; :::g: For example, if w is the identity, all n in 3,
4,... are /w;l-simple, and in the case D ¼ f0; . . .; r � 1g
and wðiÞ :¼ i þ 1 mod r one arrives at the n 2
fr þ 2; 2r þ 2; 3r þ 2; :::g:

Similar results hold if / depends only on the right number
in the tuple (i, j), that is, if / is defined as/w,r(i, j) := w(j) for a
map w : D! D:

b) The case of an abelian group, I: Suppose thatþ : D� D!
D is such that ðD;þÞ is an abelian group. We consider
/+(i, j) := i + j. Then, for n C 3, one has

Unða1; . . .;anÞ ¼ a1 þ
n� 1

1

� �
a2 þ

n� 1
2

� �
a3

þ � � �þ n� 1
n� 2

� �
an�1 þ an:

Consequently,nwill be/+-simple iff for all k 2 f1; . . .;n� 2g

and all a 2 D the element
n� 1

k

� �
a is zero.

In order to apply this observation, we need some facts
concerning binomial coefficients.

LE M M A 1. (i) Let p be a prime and m an integer such that

m [ p. Then p divides all
m
k

� �
for k ¼ 1; . . .;m� 1 iff m is of

the form ps. In this case p2 does not divide all these
m
k

� �
:

(ii) Let m and r be integers with m [ r [ 1 such that

r divides the
m
k

� �
for k ¼ 1; . . .;m� 1: Then r is a prime p, so

that by (i) m is of the form ps.

PR O O F. These assertions are a reformulation of a classical

result on binomial coefficients due to Balak Ram [3]. (For

a far-reaching generalization of Ram’s theorem, cf. [2].) It

states: The greatest common divisor of the numbers

m
k

� �
; k ¼ 1; . . .;m� 1; is p if m is the power ps of a prime

p and it is 1 otherwise.

In the next section, we will derive an independent proof of
this fact as a corollary to our results on /-simple numbers
(corollary 8).

PR O P O S I T I O N 2. With the notation preceding the lemma,

one has:

(i) Suppose that p is a prime such that p � a ¼ 0 for all a 2 D:
Then an n C 3 is /+-simple iff there is an s such that
n = ps + 1. If such a p exists, it is uniquely determined.

(ii) Suppose that there is no prime p such that all p � a are 0.
Then there are no /+-simple n.

PR O O F. The first part of (i) follows from the lemma, the

second is a consequence of the fact that m � a ¼ 0 ¼ n � a
implies gcdfm;ng � a ¼ 0: (ii) Suppose that there exists a

/-simple n. Then, by the observation preceding the lemma,

the
n� 1

k

� �
� a vanish for k ¼ 1; . . .;n� 1 and a 2 D: Let

r be the greatest common divisor of these
n� 1

k

� �
: Then all

r � a vanish.

The case r = 1 can be excluded because we assumed that
D contains at least two elements. If r [ 0, however, r must be a
prime in contradiction to our assumption.

c) The case of an abelian group, II: As in ‘‘b’’ we assume that
ðD;þÞ is an abelian group, and this time we define / by
/-(i, j) := -i - j. We obtain

Unða1; . . .;anÞ ¼ ð�1Þn�1

�
a1 þ

n� 1

1

� �
a2

þ
n� 1

2

� �
a3 þ � � �þ

n� 1

n� 2

� �
an�1 þ an

�
;

and we conclude: If an n is /-simple, then:
n� 1

k

� �
a ¼ 0

for all a 2 D and all k 2 f1; . . .;n� 2g; and (- 1)n-1a = a
for all a. In particular n must be even if it is not true that
a = -a for all a.

PR O P O S I T I O N 3. (i) Suppose that p is a prime such that

p � a ¼ 0 for all a 2 D: Then an n C 3 is /--simple iff there

exists an s such that n = ps + 1.

(ii) Suppose that there is no prime p such that all p � a are

0. Then there are no /--simple n.

PR O O F. If p is odd, the proof follows again from the con-

crete description of the number Unða1; . . .;anÞ: In the case

p = 2 one has /+ = /-, and the result is a consequence of

proposition 2.

The Solution of the Mystery: Günter Ziegler has contributed
the important observation that the Centre example corre-
sponds to /- for the group Z3: Thus it follows from
proposition 3 that the /--simple n in this situation are
precisely the numbers 3s + 1 as conjectured. (An inde-
pendent proof is shown below: See the remark after
theorem 7.)

We mention that there are some obvious constructions to
generate new examples from known ones, and in all of these
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cases the simple integers for the new maps can easily be
determined from the simple integers for the old ones:

• Products: Let Di and /i : Di � Di ! Di for i = 1,2 be given.
We define D :¼ D1 � D2 and / : D� D! D by
ði1; i2Þ; ðj1; j2Þð Þ 7! /1ði1; j1Þ;/2ði2; j2Þð Þ:

• Projections: LetD � D0 and s : D0 ! D beanymap such that
s(i) = i for i 2 D : The i 2 D0 n D are identified with certain
elements of D: Define /0 : D0 � D0 ! D0 by ði0; j 0Þ 7!
/ sði0Þ; sðj 0Þð Þ:

• Permutations: Let s : D! Dbeabijectionand/ : D� D!
D: This situation induces /sði; jÞ :¼ / sðiÞ; sðjÞð Þ:

By combining these results, one finds manyD and / where
the /-simple n can be characterized. Even more is true: If the
number of elements of D is two, resp. three, we have inves-
tigated systematically all 2ð2

2Þ resp. 3ð3
3Þ possible /, and

whenever we found a /-simple n, it turned out that this situ-
ation could be explained by a suitable combination of the
preceding examples and constructions.

Some General Results
In the next lemma, we show how to obtain new /-simple
n from known ones:

LE M M A 4. Let / : D� D! D be given. If an integer d is /-

simple, then so is (d - 1)s + 1 for every s.

PR O O F. To illustrate the idea. we will consider the case

d = 4 and n = 10 first. We will write the top row ða1; . . .;a10Þ
as ða1

1; . . .;a1
10Þ; the second row /10ða1; . . .;a10Þ as

ða2
1; . . .;a2

9Þ; the third row /9 �/10ða1; . . .;anÞ as ða3
1; . . .;a3

8Þ;
etc. The bottom element Uða1; . . .;anÞ of the triangle is

denoted by a1
10.

We consider six (overlapping) subtriangles. (In the picture,
their vertices are indicated by ‘‘*’’.) The first rowof the first one
is ða1

1; . . .;a1
4Þ: Because 4 is /-simple, we know that a1

4 equals
/(a1

1,a4
1), and a similar observation applies to the other five

triangles.
To phrase it otherwise: In order to calculate all elements in

the large triangle, it suffices to consider the triangle formed by
the elements with a ‘‘*’’ (first row (a1

1, a4
1, a7

1, a10
1 ), second row

(a1
4, a4

4, a7
4), third row (a1

7,a4
7), bottom element a1

10). Because 4
is /-simple, it follows that a1

10 = /(a1
1,a10

1 ), that is, 10 is also
/-simple.

In thegeneral case, oneargues in a similarway. Theproof is
by induction on s, where the assertion is true for s = 1 by
assumption. Suppose that the result hasbeenshownforafixed
s and that n = (d - 1)s+1 + 1. In the associated triangle, we
find d þ ðd � 1Þ þ � � �þ2þ 1 subtriangles where in each one
the induction hypothesis can be applied. Thus we may pass to
a triangle where the first row contains only d elements, and
because d is /-simple, we conclude that n is /-simple as well.

Toprepare thenext result,wewill needa furtherdefinition:
We will say that a / : D� D! D is left and right unique if all
maps /ð�; jÞ : D! D and /ði; �Þ : D! D are one-to-one. (It
follows that i canbe reconstructed from jand/(i, j), and j from
i and /(i, j).)

This holds, for example, for the /+ and the /- from the
preceding section that are induced by abelian groups (parts
‘‘b’’ and ‘‘c’’). Also in the case of a general finite group ðD; �Þ;
the map / : ði; jÞ 7! i � j would be left and right unique.
However, we do not know how to find /-simple integers in
the general nonabelian case.

Note that the examples in subsection ‘‘a’’ of the Example
section never are left and right unique.

PR O P O S I T I O N 5. Suppose that / : D� D! D is left and

right unique and that d is a /-simple integer. By r we

denote the number of elements in D:
Then an integer n[d such that n 6¼ 1 mod ðd � 1Þ will

not be /-simple. More precisely, the following is true: If n 6¼ 1

modðd � 1Þ; then the proportion of the ðb1; . . .; bnÞ 2 Dn for

which Uðb1; . . .; bnÞ ¼ /ðb1; bnÞ holds is 1/r (and not 1 as in

the case of /-simple n).

PR O O F. Let n [ d be given with n 6¼ 1 mod ðd � 1Þ: Con-

sider an arbitrary ða1; . . .;an�dþ1Þ 2 Dn�dþ1 in the d’th row of

the triangle.

CL A I M 1 For fixed i; j 2 D there are precisely rd-3 elements

ðb1; . . .; bnÞ 2 Dn with b1 = i and bn = j such that

/n�dþ2 � � � � �/nðb1; . . .; bnÞ ¼ ða1; . . .;an�dþ1Þ:

PR O O F O F T H E CL A I M : In order to explain the idea of the

proof, we start with a concrete example. We consider as in the

gallery D ¼ ðZ3;þÞ together with / ¼ /� : D� D! D; ði; jÞ
7! � i � j: It was already mentioned that d = 4 is /-simple,

and we will consider the case n = 8, i = 0, and j = 1.

How many ð0; b2; . . .; b7; 1Þ 2 D8 exist such that the fourth
row of the triangle coincides with a specific ða1; . . .;a5Þ; for
example with (1, 0, 0, 1, 1)?

Because 4 is /-simple, we know that 1 = a1 = /(0,b4),
and by uniqueness this implies that b4 = 2. But 1 = a4 =

/(b4,b7), and this enables us to identify b7 as well: b7 = 0.
Similarly we can work backwards: From 1 = a5 = /(b5,1) we
conclude that b5 = 1 and – by using 0 = a2 = /(b2,b5) – in a
next step thatb2 = 2. It seems thatweare still free to choose b3

andb6, but this isnot the case:Afterb3 isfixed,wecancalculate
b6 from the identity a3 = /(b3,b6). We have thus shown that
there are 3 = rd-3 admissible choices ð0; b2; . . .; b7; 1Þ to
obtain (1, 0, 0, 1, 1) in the fourth row of the triangle.

It remains to repeat this argument for the case of general
n, r and d.The relevant subtriangles
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Because d is /-simple, we know that /(b1, bd) =

/(i, bd) = a1. By the uniqueness assumption for /, there is
precisely one bd with this property. By the same reason, we
know that /(bd,b2d-1) = ad so that b2d-1 is also uniquely
determined by i and the a1; . . .;an�dþ1: In this way we con-
tinue to identify b3d-2, b4d-3, etc. We stop at the largest l such
that ld - (l - 1) B n, and we note that ld - (l - 1) = n will
not happen since n 6¼ 1 mod ðd � 1Þ:

Next we work from right to left. We have /(bn-d+1,
bn) = /(bn-d+1, j) = an-d+1, and this enables us to identify
bn-d+1. From /(bn-2d+2,bn-d+1) = an-2d+2, we recover
bn-2d+2, etc. Note that these positions are different from those
when we started from the left: no ld - (l - 1) coincides with
an n - l 0d + l 0, this follows from n 6¼ 1 modðd � 1Þ:

Summing up, we see that i, j and the ða1; . . .;an�dþ1Þ
determine many of the bk. Consider in particular the k 2
f1; . . .;dg: There is exactly one number k 0: = n - l 0d + l 0 in
this interval where 1 = k 0 = d, and b1(= i), bk’, and bd are
known. Choose any bs 2 D for the s 2 f2; . . .;d � 1g n fk0g;
and note that there are d - 3 such s. After these are fixed, we
can determine the remaining bj. It suffices to work as in the
beginning from left to right: bs together with as determines
bs+d-1, then we obtain bs+2d-2, etc.

It follows that we have rd-3 free parameters, and this
proves the claim.

CL A I M 2 For any k 2 D; the proportion of ða1; . . .;amÞ 2
Dm such that Umða1; . . .;amÞ ¼ k is precisely 1/r. (This can

easily beverifiedby inductiononm; the fact that/ satisfies the

uniqueness assumption is essential here.)

Now fix any i; j 2 D and put k: = /(i, j). By claim 2 there
are rn-d+1/r elements ða1; . . .;an�dþ1Þ in Dn�dþ1 such that
Un�dþ1ða1; . . .;an�dþ1Þ ¼ k: Each of these ða1; . . .;an�dþ1Þ is
by claim 1 generated by rd�3 elements ði; b2; . . .; bn�1; jÞ: In
total, there are rd�3 � rn�d ¼ rn�3 elements ði; b2; . . .;
bn�1; jÞ 2 Dn that lead to k, and because there are rn-2 ele-
ments of the form ði; b2; . . .; bn�1; jÞ; the proportion is 1/r as
claimed.

Next we describe what happens in the case n ¼ 1
modðd � 1Þ:

LE M M A 6. Suppose that / : D� D! D is left and right

unique and that d is a /-simple integer.

Let n [ d be such that n ¼ 1 mod ðd � 1Þ: Then this

number is /-simple iff (n - 1)/(d - 1) + 1 is /-simple.

PR O O F. The idea is similar to thatof theproof ofproposition

4. If d - 1 is a divisor of n - 1, we can reduce the problem of

investigating the large trianglewith first row ða1; . . .;anÞ to the

study of a triangle with first row ða1;ad ;a2d�1; . . .Þ of length

(n - 1)/(d - 1) + 1.

(As an illustration, consider the example d = 4 and n = 7
where the reduced triangle consists of the elements marked
with a ‘‘*’’ in thepicture: There are (7 - 1)/(4 - 1) + 1 = 3 in
the first row.) The result follows since d is /-simple.

Here is our main result:

TH E O R E M 7. Suppose that / : D� D! D is left and right

unique and that /-simple integers exist. By d we denote the

smallest one.

Then an n[d is /-simple iff n is of the form (d - 1)s + 1.

PR O O F. That all (d - 1)s + 1 are /-simple was proved in

lemma 4. It remains to show that all /-simple n have this form.
Let such an n be given, we may assume that n[d. By

proposition 5 we must have n1 :¼ n ¼ 1 mod ðd � 1Þ: Let
n2 := (n1 - 1)/(d - 1). When n1 is /-simple, lemma 6
ensures that n2 is too, so that – again by proposition 2 – n2 ¼
1 mod ðd � 1Þ if n2 [d; this implies n = 1mod (d - 1)2. In
this way we continue to construct /-simple n1 [ n2 [ � � � as
long as ns [d. In the last step we must have ns = d, hence
n = (d - 1)s + 1.

RE M A R K : It can easily be checked that 4 is the smallest

/-simple number in the gallery example. This leads to another

proof of the conjecture that one has to consider, precisely the

3s + 1, if one wants to have a similar phenomenon as in the

case n = 10.

Our results imply the Ram theorem:

CO R O L L A R Y 8. The greatest common divisor of the

m
k

� �
; k ¼ 1; . . .;m� 1; is p if m is of the form ps for a prime

p and 1 otherwise.

PR O O F. Let p be a prime. Then, by anelementary argument,

p divides all
p
k

� �
for k ¼ 1; . . .; p� 1: This means that p + 1

is /+-simple for D ¼ Zp and /+(i, j): = i + j (cf. Examples,

part ‘‘b’’), and p is surely the smallest /+-simple number. We

conclude from theorem 7 that the /+-simple integers are

precisely the ps + 1 so that p will be a divisor of
ps

k

� �
for

k = 1, ps - 1.

Now let m be such that the greatest common divisor of the

m
k

� �
; k ¼ 1; . . .;m� 1 is a number r [ 1. Choose any prime

divisor p of r. Then, with the notation of the preceding

From n = 7 to (n - 1)/(d - 1) + 1 = 3
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paragraph, m is /+ simple so that, by theorem 7, m is of the
form ps. This can be true for at most one p, and it remains to
complete the case m = ps.

We already know that p divides r : = the greatest common

divisor of the
ps

k

� �
; k ¼ 1; . . .; ps � 1 and that p is the only

prime divisor of r. Thus r = pl for some l 2 N; and it remains to
show thatonly l = 1canoccur.But this caneasilybe shown:By
counting how many p-factors there are in the numerator and

the denominator of
ps

ps�1

� �
; one can convince oneself that

ps

ps�1

� �
is not divisible by p2. This completes the

proof.

Some Open Problems

1. All examples of D and / where we are able to determine
/-simple integers are derived from the D and / and the
constructions described in the Examples section. It would
be interesting to have further classes of examples.

2. Let � : D� D! D be such that ðD; �Þ is a group. Can one
find conditions similar to the abelian case such that (with
/:= �) /-simple integers exist?

3. Suppose thatD and/ are given and that onewants todecide
whether there are /-simple n. That a particular n is not

/-simple can easily be checked: Generate a ‘‘large’’ number
of ða1. . .;anÞ 2 Dn at random. If n is not /-simple, it is very
likely that one finds an example where Unða1. . .;anÞ 6¼
/ða1;anÞ: But how many n will have to be tested until one
can be sure that /-simple ones do not exist?

It would be desirable to have a result of the following type:
For all D and / there is an n0 (that can be easily calculated from
D and /) such that no /-simple n exist if all n B n0 fail to be
/-simple.
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